
Variable Radii Poisson-Disk Sampling

Scott A. Mitchell, Alexander Rand,
Mohamed S. Ebeida, Chandrajit Bajaj

www.cs.sandia.gov/~samitch
(or Google Mitchell Sandia)

24th Canadian Conference on Computational Geometry

8-10 August 2012
Session 4B

Thursday Aug 9
11:30-11:50

Goal – convince you

• There is still interesting Computational Geometry
work for generating separate-yet-dense point sets
– Delaunay Refinement (DR) doesn’t solve everything

• Poisson-disk output has some advantages
– Graphics cares
– Fracture mechanics cares

• Even though slower than deterministic DR
• Slightly different than sphere packings

Outline

•  Maximal Poisson-Disk Sampling (MPS) – what is it, why do we care
–  Graphics apps
–  Simulations

•  Our prior results for MPS points, Voronoi and Delaunay meshes
–  Sites may encroach on boundary, not dual of a body-fitted

tetrahedralization
•  Spatially varying radii
–  Lipschitz conditions

•  Motivation: MPS spectrum vs. blue noise
•  Two-radii MPS definition
–  Random refinements

•  MPS output vs. Delaunay Refinement (DR)
–  PSA Spectrum
–  Angle spectra vs. DR, Edge length vs. DR

Maximal Poisson-Disk Sampling
• What is MPS?
– Dart-throwing
–  Insert random points into a domain, build set X

• With the “Poisson” process

Ω
x4?	

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

MPS a.k.a.
•  Statistical processes
–  Hard-core Strauss disc processes

•  Non-overlap: inhibition distance r1
•  cover domain: disc radius r2

•  Geostatistics focus is inverse problem
–  Given satellite pictures (non-maximal dist.)

•  How many trees are there?
•  How much lumber?

–  Trees in a forest
•  Points are trunks
•  Disks are canopy or
•  separation distance

• Random sphere packing
–  r/2-disks non-overlap
– MPS = random sequential

adsorption
–  (atoms in a liquid, crystal)

New Mexico “Forest” 	

r1>r2	

British Columbia Forest
r1<r2	

Motivation from old-school
Static Graphics

• Stippling: images from dots, as newsprint
(results from this paper)

Motivating from Modern Graphics:
(Brush) Stroke-Based Rendering

•  CG artistic effect to mimic physical media
•  Images from Aaron Hertzmann, Stroke-Based Rendering

Stroke-Based Rendering

Stroke-Based Rendering
Aaron Hertzmann

University of Washington

1 Introduction
This chapter describes stroke-based rendering (SBR), an automatic approach to creating non-photorealistic
imagery by placing discrete elements called strokes, such as paint strokes or stipples. Many stroke-
based rendering algorithms and styles have been proposed, including styles of painting, pen-and-ink
drawing, tile mosaics, stippling, streamline visualization, tensor field visualization and jigsaw image
mosaics. This tutorial attemps to make sense of the disparate work in this area by creating a unified
view of SBR algorithms, which helps us to identify the common elements, as well as the unique ideas
of each. Moreover, presenting ideas in this fashion suggests possibilities for future research.

We can introduce SBR algorithms with a painterly rendering [Her98, Her02]:

Source photo Painted version Final rendering

This figure shows an SBR algorithm in action: starting from a photograph, a collection of brush
strokes are placed to match the photograph, and then rendered to appear as if created with oil paint.

Although the details vary, all SBR algorithms create images by placing strokes according to some
goals. The most common goal is that we want the painting to “look like” some other image — in
this case, we want to place colored brush strokes to look like the picture of the mountain. Another
important goal is to limit the number of strokes in some way. Otherwise, the algorithm can just use
many tiny brushstrokes, producing a very good match to the source image without much abstraction.

Finally, once the strokes have been placed, they can be rendered in some other form. Note that
we did not add texture until after the brush strokes are placed; we compared the source photo to

Recent Advances in NPR for Art and Visualization 3-1

Stroke-Based Rendering

decisions which can only be made by an artist working towards some goal. Ideally, a human artist
using the system should have total control over the decisions being made. For example, a user should
be able to specify spatially-varying styles, so that different rendering styles are used in different parts
of the image, or to specify positions of individual strokes. However, one of the great advances in art in
the age of digital machines is the ability to create complex systems of procedural art, where the artist
does not directly create the final work, but rather creates rules according to which the final decisions
are made1. Hence, an artist may design the energy function, but not necessary edit every individual
image produced by the algorithm. In one possible scenario, the artwork may “occur” at a time after
the artist’s involvement. The main goal of SBR algorithms is to provide procedural tools that auto-
mate parts of the image creation process, not to replace the artist (which would be both a futile and an
undesirable goal).

In this tutorial, I survey some of the various SBR styles and algorithms that have been created, and
discuss the advantages and disadvantages of each. I will first describe the framework in somewhat more
rigorous detail, including the use of objective functions to define specific problems. I will then describe
specific SBR applications, grouped by algorithm in order to emphasize how, from a computational
point of view, styles that look superficially different are often just variations on a theme. Pointers to
related research (including extensions to animation) are given in Section 7.

2 Stroke-Based Rendering: Stating the Problem
In this section, I outline a general view of stroke-based rendering algorithms in terms of energy min-
imization. I begin with some preliminary definitions and examples, followed by the basic problem
statement as well as a statistical view of the problem, and conclude with a discussion of the advan-
tages and disadvantages of this approach. SBR algorithms will be surveyed in the remaining sections
of this chapter.

We begin with a few definitions. First, we need to define what our strokes can look like.

Definition: A stroke is a data structure that can be rendered in the image plane.
A stroke model is a parametric description of strokes, so that different parameter
settings produce different stroke positions and appearances.

For example, one form of stippling uses a very simple stroke model:

(x,y)

R

Stippling stroke model Individual strokes (stipples)

As illustrated above, a stipple is a stroke that can be described with two parameters: the (x,y)
position of the stipple in an image, and the radius R of the stipple. (As we shall see in Section 3.1,

1Technically speaking, procedural art does not require modern technology (e.g. see [Aar97, Mur98]).

Recent Advances in NPR for Art and Visualization 3-3

Aaron Hertzmann

some intermediate image with a simplified stroke model. This is both for efficiency and for aesthetic
reasons, to be discussed later. The main point is that the final rendering may be different from the way
we expressed our goals about the image.

Here is another example of a automatic vector-field visualization [TB96]: Here, streamlines are

Vector field Final rendering Blurred rendering

used to effectively convey the motion of a vector field. In order to clearly illustrate the vector field,
the placements should be placed evenly — the middle rendering was created with the goal that the
blurry version should be as close to a constant grey value as possible. For comparison, the image on
the left shows stroke placements on a regular grid without adjustment. Again, we can see that this
streamline visualization algorithm is an SBR algorithm: it places strokes (streamlines) according to
specified goals (to follow the vector field and to match a target tone in the blurred image).

It is usually not possible to exactly meet all of the goals; hence, it is useful to have a way of trading-
off the goals, and quantifying their importance. We can do this by formalizing an SBR problem as
an objective function minimization problem. An objective function is a mathematical formula that
explains “how good” our rendering is; SBR algorithms can be seen as attempting to minimize objective
functions. For example, it isn’t possible to place the streamlines in the above visualization to achieve
a purely constant tone in the gray image. Hence, instead, we can use as an objective function the
deviation of the blurred image from a constant image.

So far, we have described two different SBR problem statements, one for painterly rendering and
one for visualization, but said nothing of how to design algorithms for these problems. There are
two main approaches to designing SBR algorithms: greedy algorithms, in which strokes are greedily
placed to match the target goals, and optimization algorithms, where the algorithm iteratively places
and then adjusts stroke positions to minimize the objective function. A greedy algorithm produced the
above painterly rendering, and an optimization algorithm produced the streamline visualization.

Haeberli introduced both a semi-automatic greedy algorithm and an automatical optimization al-
gorithm in a seminal paper [Hae90]. Digital paint systems had previously automated some of the
stroke renderings [Smi01], but did not automate any stroke placement choices. Wireframe renderings
had previously been common in computer graphics (preceding photorealistic rendering), and Yessios
[Yes79] described a system for drafting with strokes based on architectural drafting styles.

Although this tutorial focuses on the technical details of SBR algorithms, it is important to remem-
ber that they are useless without human control. Every aspect of the system (including the choice of
stroke models, the setting of weight parameters, and the selection of input imagery) requires aesthetic

3-2 SIGGRAPH 2002

Motivating from Modern Graphics:
Texture Synthesis

• Real-time environment exploration. Games! Movies!
• Algorithm to create output image from input sample
– Arbitrary size
–  Similar to input
– No visible seams, blocks
– No visible, regular repeated patterns

examples from wikipedia: Spaghetti ���

Li Yi Wei	

SIGGRAPH 2011	

What is MPS good for?
Sandia cares about Games and Movies? training…

• Physics simulations – why SNL paid for year 1-2 J
• Voronoi mesh, cell = points closest to a sample
•  Fractures occur on Voronoi cell boundaries

– Mesh variation material strength variation
– CVT, regular lattices give unrealistic cracks

• Unbiased sampling gives realistic cracks
• Ensembles of simulations
• Domains: non-convex, internal boundaries

Fig. 2. Top, a non-convex fracture domain with a hole. Bottom,
a seismic domain; our implementation succeeded despite the user
selecting a coarser mesh size than the theory requires.

triangle’s circumcircle contains no point visible to the tri-

angle’s vertices. Covering triangulations [28] add interior

points to improve triangle angles, but constraint edges and

vertices limit the improvement. In a Conforming Delau-

nay Triangulation (CDT), constraint edges are subdivided

as well, greatly improving mesh quality. Each constraint

edge is a union of triangle edges, and triangles are con-

strained Delaunay. CDT is important in many fields such

as interpolation, rendering, and mesh generation. Well-

shapedmeshes of well-spaced points havemany useful prop-

erties [27].

A very effective family of CDT algorithms is based on De-

launay refinement: start with a coarse mesh, and insert a

point at the center of large Delaunay circumcircles. We con-

trast and bridge our method to the root of this family’s

tree, Chew [8]. Since Chew’s seminal paper, Delaunay re-

finement has been generalized in many ways. The most rel-

evant generalization for us is that new points do not need

to be at the exact center of a Delaunay circle; indeed our

work shows they can be placed randomly, as long as they

are far enough away from prior points. Off-centers [37] in-

serts a point between the center and a short edge; it re-

duces the total number of inserted points by implicitly grad-

ing the mesh size. It also improves numerical stability. In

three-dimensions, nearly-planar tetrahedra can be avoided

by perturbing points. This can be done randomly [9] or de-

terministically [14]. This can be done symbolically or with

actual coordinates or the Voronoi weights [6]. Randomly in-

serting a point, say within a smaller circle concentric with

the Delaunay circle, reduces the bias.

Parallel Delaunay refinement is possible. The points used

to fix different simplices will interfere with one another, but

this can be resolved by only inserting the non-conflicting

points, and taking multiple passes [34].

In any event, Delaunay refinement inserts biased points; an

unbiased process selects a new point outside the (constant)

radius r disk of any other point, but is otherwise chosen

uniformly at random from the remaining disk-free area of

the domain. This is also known in spatial statistics [4] as the

hard-core Strauss disc processes with inhibition distance

r1 and disc radius r2, where for us r1 = r2. The limiting

distribution is called amaximal Poisson-disk sample (MPS)

in graphics.

The probability of inserting a point at a given location is

independent of the location. For Delaunay refinement the

insertion probability depends on intermediate properties of

the algorithms, such as the order in which bad-angle tri-

angles are addressed and the DT angles and circle centers.

The bias may be difficult to understand, describe, or pre-

dict, although spectrum analysis of pairwise distances can

measure bias. Unbiased points have spectra with the “blue

noise” property. Unbiased sampling algorithms have a long

history in computer graphics relating to image synthesis,

including applications in anti-aliasing [22] andMonte Carlo

methods for ray tracing, path tracing, and radiosity [38].

Random meshes are useful in several contexts. The effects

of mesh structure on modeling fracture in solid mechan-

ics was studied in detail in the 1990’s; see Bolander and

Saito [3] for a thorough discussion. For some finite element

methods, crack propagation is limited to triangle edges,

or dual Voronoi cell edges. Structure also plays a role for

spring networks, e.g. crack formation may depend on the

orientation of the mesh with respect to the stress field. In

either method, the locations of fractures are suspect if the

locations of mesh points are biased. Lattice meshes are par-

ticularly troublesome [20], as is geometric regularity aris-

ing from some adjustment procedures such as point repul-

sion [36] and centroidal Voronoi tesselation [24]. Strain and

stress rates are independent of rotations, i.e., the physics

are isotropic. For spring networks, mesh structure may af-

fect the ability to model this isotropy and reproduce uni-

form elasticity, independent of fracture.

For computational science validation it may help to have

multiple meshes with nearly identical global properties,

but with local differences. Simulations results over all the

meshes can be compared, to see if the results are dependent

on mesh artifacts. Fracture simulations are dependent, but

point location variablity is considered a subset of material

property variability. Simulations over an esemble of meshes

are collected to generate the range of possible experimen-

tal outcomes. Unbiased Poisson-disk sampling is ideal for

these applications; amaximal distribution helps with angle

bounds (Section 3.1) and performance [2].

The meshing literature abounds with methods for handling

sharp features of the domain: small input angles, and edges

2

Seismic Simulations	

maximal helps Δ quality	

Comput Mech (2009) 44:455–471 457

deformed configuration, the position of a material point is
denoted by x, and the displacement u = x−X. In the numer-
ical solution to follow, interpolation functions will be con-
structed directly on the reference configuration. Therefore,
a total Lagrangian formulation of the governing equations
is appropriate [8]. The conservation of linear momentum is
given by [7]

∂P
∂X

: I + ρof = ρoü, (1)

where P is the first Piola-Kirchhoff stress tensor, f is the body
force vector per unit mass, ρo is the reference density, and I
is the identity tensor. The weak form of Eq. 1 is given by
∫

#o

ρoü · δu d#o =
∫

%o

to · δu d%o +
∫

#o

ρof · δu d#o

−
∫

#o

ρoP : (∂(δu)/∂X) d#o (2)

where δu is a virtual displacement vector, and to is the trac-
tion vector per unit reference area. The displacement u and
virtual displacement δu are members of the Sobolev function
space of degree one [8].

In the next section, a randomly close-packed Voronoi tes-
sellation is used to mesh the reference domain #o. The face
network of the Voronoi mesh will be used as a random basis
for representing new fracture surfaces in the deformed con-
figuration. In Sect. 4, Eq. 2 will be solved using a Galerkin
finite element approach where each Voronoi cell is formu-
lated as a finite element directly on the reference
configuration.

3 Randomly close-packed Voronoi tessellations

Voronoi tessellations have a rich history in mathematics and
science and have a number of advantageous properties [43].
Given a finite set of points Xi or nuclei, the Voronoi
tessellation is defined as the collection of regions or cells
Vi where

Vi =
⋂

i "= j

{X|d(Xi , X) < d(X j , X)}. (3)

Here, X represents an arbitrary point in the domain, and the
function d is the Euclidean distance between two points.
Each spatial point belonging to the Voronoi cell i is closer to
nucleus i than all other nuclei. Note that each Voronoi cell is
defined as the intersection of half-spaces and is thus convex.
An example of a two dimensional Voronoi cell is shown in
Fig. 1. While the Voronoi tessellation can be formed from
any finite set of points or seeds, a special structure arises
from the study of close packing of equi-sized hard spheres
[1]. A classic experiment of dropping hard spheres into a rel-
atively large container produces a structure known as random

Fig. 1 A collection of points and their associated Voronoi diagram
defined by Eq. 3

(a) (b)

Fig. 2 The associated Voronoi diagram for both (a) an hexagonal close
packed array of points, and (b) a randomly close packed array

close-packed (RCP) [64]. Unlike the well known hexagonal
close-packed (HCP) structure with a packing factor of 0.740,
the RCP structure exhibits a maximum packing factor of only
0.637. An example of the associated Voronoi tessellation for
both the HCP and RCP structures in two dimensions is shown
in Fig. 2. The RCP structure arises in a number of scientific
fields and has been extensively studied. The RCP structure
provides a foundation for the study of amorphous solids as
described by Zallen [64]. The statistical geometry aspects of
RCP structures and their associated Voronoi diagrams have
been studied by Finney [20]. In three dimensions the aver-
age number of nearest neighbors is 14.3. For comparison, the
number of nearest neighbors of the hexagonal close-packed
structure is exactly 14. For the RCP structure the average
aspect ratio of each Voronoi cell is approximately one. The
median number of cell faces is 14 with a large majority of
the face distribution in the range of 13 to 16. The median
number of edges of each cell face is 5 with a large majority
of the distribution in the 4 to 6 range. Most importantly each
junction or node of the RCP Voronoi structure is randomly
oriented with only a short range correlation to neighboring
nodes. In two dimensions the RCP Voronoi structure results
in cells with an average number of edges of exactly 6 and

123

Comput Mech (2009) 44:455–471 465

Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the

123

Comput Mech (2009) 44:455–471 465

Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the

123

Comput Mech (2009) 44:455–471 465

Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the

123

Fracture Simulations	

!

Courtesy of ���
Joe Bishop (SNL)	

80%	

95%	

Prior Results

•  Many fast Graphics algorithms that modified the process slightly, or the
termination criteria

•  First E(n log n) algorithm with provably correct output
–  Efficient Maximal Poisson-Disk Sampling,

Ebeida, Patney, Mitchell, Davidson, Knupp, Owens,
SIGGRAPH 2011

•  Simpler, less memory, provably correct,
faster in practice but no run-time proof
–  A Simple Algorithm for Maximal Poison-Disk Sampling in High Dimensions,

Ebeida, Mitchell, Patney, Davidson, Owens
Eurographics 2012

•  Voronoi Meshes
–  Sites interior, close to domain boundary are OK, not the dual of a body-fitted Delaunay Mesh
–  Uniform Random Voronoi Meshes

Ebeida, Mitchell
IMR 2011

•  Delaunay Meshes
–  Protect boundary with random balls
–  Efficient and Good Delaunay Meshes from Random Points

Ebeida, Mitchell, Davidson, Patney, Knupp, Owens
SIAM GD/SPM 2011

reflex boundary edge convex boundary edge

x

x

x

x
border edge

edge-seed
vertex-seed

fringe-seed interior-seed

border edge

s x

n

a b m

q t

!
" #

d = |ab|

T = |tb|

S = |st|

120° circle

interior disk centers

 covering n

$

First Contribution

• Uniform, static literature pretty rigorous
– Graphics papers with heuristics for sampling

curved surfaces, non-uniformly
•  unknown or unstated Lipschitz criteria,

neighbor datastructures that sometimes blow-up in
practice

• Lipschitz conditions for spatially varying radii
function
– Reasons and proof techniques as in Delaunay

Refinement

How fast can radii vary?
•  If varies slowly
–  bounded # neighbors for disk conflict checks <->

bounded-angle DT
•  If shrink too fast
–  Unbounded # neighbors
–  Infinite run-time
–  Zero angles in triangulation

!!"

""

#$%!&"
L y! xi + r(xi)

Still big, OK	

Vanishing radius, ���
infinite neighbors	

α	

α	

Q. How fast can it vary?
A. Depends how Conflict is defined. 24th Canadian Conference on Computational Geometry, 2012

Distance Order Full Conflict Edge Edge Sin Angle Max
Method Function Independent Coverage Free Min Max Min L

Prior r(x) no no no 1/(1 + L) 2/(1− 2L) (1− 2L)/2 1/2
Current r(y) no no no 1/(1 + L) 2/(1− L) (1− L)/2 1
Bigger max (r(x), r(y)) yes no yes 1 2/(1− 2L) (1− 2L)/2 1/2
Smaller min (r(x), r(y)) yes yes no 1/(1 + L) 2/(1− L) (1− L)/2 1

Table 1: Summary of results for spatially varying radii. Points closer than f conflict. Symmetric f provide order
independence: any sampling with the order of samples permuted still satisfies the empty disk property. Full
coverage means that every point of the domain is inside some sample’s r disk. Conflict free means that no sample
is inside another sample’s r disk. Edge max and min bound the lengths of an edge containing x in a Delaunay
triangulation of X, as a factor of r(x). The Lipschitz constant must be less than max L to bound the maximum
DT edge length and minimum DT angle.

also on r(y), which can be bounded using L. Some ap-
proaches require L < 1, others L < 1/2. The quality
guarantees disappear as L approaches the upper limit.
As L approaches zero the quality guarantees smoothly
approach those in the uniform case.

Bias-free An alternative to uniform-random is to
weight the uncovered set by the local sizing function,
i.e., the desired output density. In dimension d,

w(S) =

�

S

1

r(x)d
dx,

∀A ⊂ S(X) : P (xn+1 ∈ A |X) =
w(A)

w(S(X))
. (12)

We have not implemented it, but one could approximate
Equation 12 from values at quadtree corners.

Prior-disk Output Guarantees We justify the edge-
length and angle guarantees in Table 1 for prior-disks.
The proofs for the other criteria are similar and are
given in Appendix 8.

Proposition 3 If X satisfies the empty disk property,
then for all i,j, |xi − xj | ≥ r(xi)

1+L .

Proof. If i < j, the empty-disk definition implies
|xi − xj | ≥ r(xi). Otherwise,

r(xi) ≤ r(xj) + L |xi − xj | ≤ |xi − xj |+ L |xi − xj |
by the Lipschitz property and the fact that xi satisfies
the empty-disk property when it is inserted. �

Proposition 4 If X is maximal and T is a result-
ing Delaunay triangle, then the circumradius RT ≤
min

�
r(y)
1−L ,

r(x)
1−2L

�
where y is the circumcenter and x is

any triangle vertex.

Proof. Since X is maximal, |z− y| ≤ r(z) for some
sample z ∈ X, where z is not required to be a vertex of
T ; see Figure 3. The Lipschitz property gives

x

y

< r(y)

z

< r(z)

Figure 3: Notation for proofs
of circumradii bounds in the
Delaunay triangulation of a
maximal sampling.

|z− y| ≤ r(z) ≤ r(y) + L |z− y| .
Rearranging gives RT ≤ |z− y| ≤ r(y)

1−L . Applying the
Lipschitz property again gives,

RT = |x− y| ≤ |z− y| ≤ r(y)

1− L
≤ r(x) + L |x− y|

1− L
.

Rearranging again completes the proof. �

Corollary 5 If X is maximal, |xi − xj | ≤ 2r(xi)
1−2L .

Lemma 6 Suppose X is a maximal sample satisfying
the empty disk property. Then all the angles in the De-
launay triangulation are at least arcsin

�
1−2L

2

�
.

Proof. Let α be an angle in the Delaunay triangula-
tion of X and let x be the vertex on the edge oppo-
site of α which was inserted first. This opposite edge
has length at least r(x). Propositions 2 and 4 give

sinα ≥ r(x)
2r(x)/(1−2L) =

1−2L
2 . �

6 Experimental Results

We consider the spectra of distributions generated with
the different methods, but similar coverage/inhibition
radii. Spectra are analyzed using the Point Set Anal-
ysis [21] tool, which generates standardized diagrams,
aiding direct comparison. The first panel is the point
set. The second panel is the FFT spectrum of the point
set with the DC component removed. The third panel
is the radial mean power, which measures the average
variation of the second panel’s rings’ magnitudes.

L is Lipschitz constant: f(x)-f(y) < L |x-y|

Bigger:���
small disk center inside big disk center	

Smaller:���
big disk center inside small disk center	

Bigger is stricter than	

Sphere packing:	

½ radius disks overlap���
distance: sum(r(x),r(y))/2	

Fo
ur

 c
om

m
on

 ���
m

et
ho

ds
���

 in
 G

ra
ph

ic
s	

Prior:���
new candidate disk center inside an old prior disk	

Current:���
old prior disk center inside a new candidate disk	

new	

new	

new	

old	

old	

old	

new	

old	

Graphics Quality Criteria

• Graphics papers say they like MPS because
– Small low frequency component
– No big spikes, especially spikes at high frequency
–  IMO want truncated white-noise

Average radial power ���
of FFT	

Point Set Analysis: http://code.google.com/p/psa/	

 OK, but what about these?	

Unknown: analytic description of the limit distribution for MPS, ���
Mean location and magnitude, std deviations of peaks?	

Anyone know some good spatial statisticians to work with?	

Our Solution
(second contribution)

• Disk coverage radius larger than free radius
 Rc > Rf (yellow > green)

• New disks must cover some unique uncovered area
–  Else maximal (limit) distribution would be the same
–  Contrast to Hard-core Strauss disc process:

coverage disks are observed, no effect on process

Process:	

 New candidate point uniform at random	

 (f) Rejected if center inside a small green disk	

 (c) Accepted if its yellow disk covers some white area	

reject, yellow already covered	

OK, covers some white	

reject, inside a green disk	

Alg:	

 Only generate points in an outer approximation���
 to regions satisfying (c) and (f) in the first place.	

	

Two-radii MPS output

•  Classic MPS
Rf = Rc

•  Two-radii MPS
 2 Rf = Rc

•  Rf = min center dist
•  Rc =max Vor dist

•  Uniform
 R = 0
non-maximal

!"# !"#

!$#

!%#
!"

!%#
!$#

!&#

!'#

!&#

!"

!'#

!(#

!)#

*)#

!"# !"#

!$#

!%#
!"

!%#
!$#

!&#

!'#

!&#

!"

!'#

!(#

!)#

*)#

Coverage radius (blue) larger
than inhibition radius (red)	

Continuously shrink radii	

With one radius, get deterministic point placement, 	

at Voronoi vertex, as classic Delaunay Refinement	

	

With two radii, random placement,	

neighborhood of Voronoi vertex: inside green disk-at-u outside red	

Random refinements by shrinking radius

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

4 Hierarchical Sampling

4.1 Parameterized radii

Consider a maximal sampling, from either a single disk
radius or different inhibition and coverage radii. We
scale these radii by t; e.g., t could be time. For t ∈ (0, 1]
we have rf (t) = tRf and rc(t) = tRc.

!"# !"#

!$#

!%#
!"

!%#
!$#

!&#

!'#

!&#

!"

!'#

!(#

!)#

*)#

(a) rc ≈ rf

!"# !"#

!$#

!%#
!"

!%#
!$#

!&#

!'#

!&#

!"

!'#

!(#

!)#

*)#

(b) rc � rf .

Figure 1: Possible T shapes for two radii when t is re-
duced to uncover a single point u = U . The circumcircle
of �x1x2x3 is green with center u and radius rc. For
samples, rc disks are blue and rf disks are red. T is the
green disk outside the red disks.

4.2 Continuous Decrease Refinement

Consider decreasing t continuously from 1 to 0. The
sampling becomes non-maximal when U(X) �= ∅; re-
call Equation 8. To simplify the discussion assume dis-
tinct Delaunay circumradii, so U(X) grows by a single
Voronoi vertex u. A new sample is needed. If rf = rc
then there is only one place to put the sample, at u,
so the process is deterministic. Otherwise, we insert a
random point from the set T of free points which will
reduce the size of the uncovered set. See Figure 1 for
example T shapes. Efficiently selecting a new sample
can be done by sampling from a geometric outer ap-
proximation to T and resampling if necessary [9, 10].

In 2d periodic or infinite domains, we observe that u
is the circumcenter of a non-obtuse triangle, which lies
inside it. For obtuse triangles, the Delaunay triangle
sharing its longest edge has a larger circumsphere, so
its center would be uncovered for a smaller t.

Refinement can be implemented with a priority
queue, prioritizing the circumcenters of Delaunay tri-
angles by decreasing radii. A new sample creates new
triangles and destroys some old ones, so the queue must
be updated. This is essentially the generic Delaunay
refinement algorithm with a largest-first queue priority
for inserting circumcenters. DR makes no restrictions
on the circumcenter insertion order, and the Triangle
code [22] takes the opposite approach: processing the
smallest triangles first. The main difference is that when
an event occurs, we insert a nearby random point, but
DR inserts the point itself (or an off-center, etc.).

4.3 Discrete Decrease Refinement

Consider decreasing t in discrete jumps. For a new value
of t, the sampling may be non-maximal, and the same
algorithm that generated the initial sampling can be
continued to achieve maximality. Figure 2 shows com-
pleting a sampling after a jump. Some new samples are
inside the green covered region, but nonetheless reduce
the white uncovered area.

(a) t = 0.8 end (b) t = 0.6 start (c) t = 0.6 end

Figure 2: A step in a discrete hierarchy of samplings.

5 Spatially Varying Radii

We aim to produce spatially varying point density ac-
cording to a sizing function r(x) : Ω → (0,∞). A sam-
ple satisfies the empty disk property, vs. (1), if

∀i < j ≤ n, |xi − xj | ≥ f(xi,xj), (10)

and the set of uncovered points, vs. (2), is

S(X) = {y ∈ Ω : |y− xi| ≥ f(xi,y), i = 1..n}. (11)

Here f(xi,y) is a function of r(·) evaluated at a previ-
ously accepted sample xi and a later candidate sample
y. A candidate is accepted if |x − y| ≥ f(x,y) ∀x ∈ X
so far. We have four variations:

f(x,y) := r(x) Prior-disks,

f(x,y) := r(y) Current-disks,

f(x,y) := max (r(x), r(y)) Bigger-disks,

f(x,y) := min (r(x), r(y)) Smaller-disks.

(Sphere packings use a sum-of-disks sizing function,
f(x,y) = r(x) + r(y).) The f are equivalent for a fixed
radius r, but are all distinct for spatially-varying r.
Each approach has certain advantages in terms of out-
put size, DT quality, and how quickly the sizing function
may vary. See Table 1 for a summary, below for proofs
for one case, and Appendix 8 for the other cases.

A variation of Ebeida et al. [9] can efficiently produce
a maximal sampling using a flat-quadtree to capture
the uncovered area. Implementing the conflict condition
and coverage checks is simpler for some variations.

There is a limit to how quickly r(·) is allowed to vary.
We require that r is L-Lipschitz, i.e., for all x,y ∈ Ω,
|r(x)− r(y)| ≤ L |x− y| for some constant L. The
lengths of DT edges at x depend not only on r(x) but

Discrete steps	

Hierarchical by shrinking radius

Simple since continue original algorithm	

No noticeable effect on output spectrum	

New

approaches to

solve the

meshing

problem

M. S. Ebeida

and S. A.

Mitchell

MPS-CDT

All-Hex

LBMD

MG

Other method that improves the quality via

deterministic point insertion:

Chew’s method for example

• Ignore the information
associated with the input
point cloud.

• Physics is initially ignored
as well.

• Generate an initial mesh
with low quality.

• Improve the quality by
inserting points in the
circum-centers of bad
triangles

M. S. Ebeida and S. A. Mitchell New approaches to solve the meshing problem

- Direct sizing control
-  Disks centered at points, sized at that point

- Never O(n2) – no intermediate triangulation, generate points first
- No concentration at medial axis as DR
- Global Random placement
-  Slow vs. local deterministic DR
-  Spectrum results for DR depends on target, queue order

Alex Rand experiments in progress

Contrast to Delaunay Refinement (DR)

Spectrum results for DR

• Depends on target, queue order
(Alex Rand experiments in progress)

Uniform MPS vs. DR angles and edges

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

Edge Length Ratio (100 bins)

Fr
ac

tio
n

* 1
00

Unbiased MPS
Chew's First DR
Target Edge DR

0 10 20 30 40 50 60

0.
0

1.
0

2.
0

3.
0

Minimum Angle (120 bins)
Fr

ac
tio

n
* 1

20

Unbiased MPS
Chew's First DR
Target Edge DR

To do: study and contrast further	

Thanks!

